- PII
- S27129101S0869049925040063-1
- DOI
- 10.7868/S2712910125040063
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 4
- Pages
- 77-90
- Abstract
- Changes in economic reality have led to new theories in the area of the microlevel market decision making mechanism. The key trends in research that deals with microeconomics are demonstrated, to show in what aspects contemporary microeconomics reflects new conditions of the 21st century. With the help of the analysis of the current academic publications in microeconomics the behaviour aspects of the main economic agents have been clarified. New approaches and new ideas in current microeconomic investigations have been generalized. As far as consumers are concerned, new understanding has been developed in the area of rationality, utility satisfaction instead of utility maximization, new models of intertemporal choice with intertemporal transaction costs, attention and cognitive resources as new individual constraints. As for firms, new characteristics of business units have been shown in forms of digital ecosystems that blur the line between a firm and a market, different markets and industries. As a result, a classical well-structured firm has been giving way to a flexible digital division. New aspects have become inherent features of market interactions, price strategies and competition under information asymmetry. Digital economy allows to mitigate agents’ asymmetry in many dimensions through making information public, but at the same time digitalization creates barriers to optimal decision-making, e.g. non-adequate expert consultations, imprudently copying other’s social experience and rush herd behavior in networks.
- Keywords
- микроэкономика поведение потребителя теория фирмы неопределенность риск информационная асимметрия
- Date of publication
- 11.07.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 77
References
- 1. Acemoglu, D., & Jackson, M. (2017). Social norma and the enforcement of laws. . Vol. 15. No. 2. Pp. 245–295.
- 2. Ali, N., & Benabou, R. (2020). Image versus information. . Vol. 12. No. 3. Pp. 116–164.
- 3. Apesteguia, J., Ballester, M., & Cuhadaroglu, T. (2023). A behavioral model of adaptation. . Vol. 207. Pp. 146–156.
- 4. Arcidiacono, P., Ellickson, P., Mela, C., & Singleton, J. (2020). The competitive effects of entry. . Vol. 12. No. 3. Pp. 175–206.
- 5. Arrow, K., Bilir, K., & Sorensen, A. (2020). The impact of information technology on the diffusion of new pharmaceuticals. . Vol. 12. No. 3. Pp. 1–39.
- 6. Asheim, B. (2018). Smart specialisation, innovation policy and regional innovation systems: what about new path development in less innovative regions? . Vol. 32. No. 1. Pp. 1–18.
- 7. Baldwin, C., Bogers, M., Kapoor, R., & West, J. (2024). Focusing the ecosystem lens on innovation studies. . Vol. 53. No. 104949. https://doi.org/10.1016/j.respol.2023.104949
- 8. Biglaiser, G., & Cremer, J. (2020). The value of incumbency when platforms face heterogeneous customers. . Vol. 12. No. 4. Pp. 229–269.
- 9. Billot, A., Mukerji, S., & Tallon, J-M. (2020). Market allocations under ambiguity. . Vol. 71. No. 2. Pp. 267–282.
- 10. Braunerhjelm, P., & Lappi, E. (2023). Employees' entrepreneurial human capital and firm performance. . Vol. 52. No. 104703. https://doi.org/10.1016/j.respol.2022.104703
- 11. Campbell, A., Leister, C.M., & Zenou, Y. (2020). Word-of-mouth communication and search. . Vol. 51. No. 3. Pp. 676–712.
- 12. Chandrasakhar, A., Larreguy, H., & Xandri, J.P. (2020). Testing models of social learning on networks. . Vol. 88. No. 1. Pp. 1–32.
- 13. Cohen, J., Ericson, K.M., Laibson, D., & Myles, J. (2020). Measuring time preferences. . Vol. 58. No. 2. Pp. 299–347.
- 14. Echenique, F., Imai, T., & Saito, K. (2020). Testable implications of models of intertemporal choice. . Vol. 12. No. 4. Pp. 114–143.
- 15. Eliaz, K., & Spiegler, R. (2020). Incentive-compatible advertising on nonretail platforms. . Vol. 51. No. 2. Pp. 323–345.
- 16. Ellickson, P., Grieco, P., & Khvastunov, O. (2020). Measuring competition in spatial retail. . Vol. 51. No. 1. Pp. 189–232.
- 17. Espana, V., Aparicio, J., Barber, X., & Esteve, M. (2024). Estimating production functions through additive models based on regression splines. . Vol. 312. No. 2. Pp. 684–699.
- 18. Filippas, A., Horton, J., & Golden, J. (2019). Reputation inflation. . May. http://www.nber.org/papers/w25857
- 19. Fischer, P., Heinle, M., & Smith, K. (2020). Constrained listening, audience alignment, and expert communication. . Vol. 51. No. 4. Pp. 1037–1062.
- 20. Francke, A.E., & Carrete, L. (2023). Consumer self-regulation: looking back to look forward. A systematic literature review. . Vol. 157. No. 113461. https://doi.org/10.1016/j.jbusres.2022.113461
- 21. Frankel, A., & Kartik, N. (2019). Muddled information. . Vol. 127. No. 4. Pp. 1739–1776.
- 22. Galeotti, A., Golub, B., & Goyal, S. (2020). Targeting interventions in networks. . Vol. 88. No. 6. Pp. 2445–2471.
- 23. Halac, M., & Kremer, I. (2020). Experimenting with career concerns. . Vol. 12. No. 1. Pp. 260–288.
- 24. Hanany, E., Kilbanoff, P., & Mukerji, S. (2020). Incomplete information games with ambiguity averse players. . Vol. 12. No. 2. Pp. 135–187.
- 25. Hashimzade, N., Kirsanov, O., & Kirsanova, T. (2023). Distributional effects of endogenous discounting. . Vol. 122. Pp. 1–6.
- 26. Herskovic, B., & Ramos J. (2020). Acquiring information through peers. . Vol. 110. No. 7. Pp. 2128–2152.
- 27. Huang, Y., Li, K., & Li, P. (2023). Innovation ecosystems and national talent competitiveness: a country-based comparison using fsQCA. . Vol. 194. Issue. 4. No. 22733. https://doi.org/10.1016/j.techfore.2023.122733
- 28. Jacobides, M., Cennamo, C., & Gawer, A. (2024). Externalities and complementarities in platforms and ecosystems: from structural solutions to endogenous failures. . Vol. 53. No. 104906. https://doi.org/10.1016/j.respol.2023.104906
- 29. Kamada, Y., & Kandori, M. (2020). Revision Games, Vol. 88. No. 4. Pp. 1599–1630.
- 30. Kuersteiner, G., & Prucha, I. (2020). Dynamic Spatial Panel Models. . Vol. 88. No. 5. Pp. 2109–2146.
- 31. Li, L., Tadelis, S., & Zhou, X. (2020). Buying reputation as a signal of quality: evidence from an online marketplace. . Vol. 51. No. 4. Pp. 965–988.
- 32. Linde, J., Gietl, D., Sonnemans, J., & Tuinstra, J. (2023). The effects of quantity and quality of information in strategy tournaments. . Vol. 211. Pp. 305–323.
- 33. Mauring, E. (2020). Informational cycles in search markets. . Vol. 12. No. 4. Pp. 170–192.
- 34. Mullainathan, S. (2020). A memory-based model of bounded rationality. . Vol. 117. No. 3. Pp. 735–774.
- 35. Okuyama, R., & Tsujimoto, M. (2020). The importance of drug target selection capability for new drug innovation: definition, fostering process, and interaction with organizational management. . Vol. 36. No. 2. Pp. 135–152.
- 36. Paz, M.D.R., & Vargas, J.C.R. (2023). Main theoretical consumer behavioral models. A review from 1935 to 2021. . Vol. 9. No. e13895. https://doi.org/10.1016/j.heliyon.2023.e.13895
- 37. Shomalzadeh, K., Scherpen, J., & Camlibel M.K. (2023). A real-time balancing market optimization with personalized prices: from bilevel to convex. . Vol. 10. No. 100276. https://doi.org/10.1016/j.orp. 2023.100276
- 38. Silva, F. (2020). The importance of commitment power in games with imperfect evidence. . Vol. 12. No. 4. Pp. 99–113.
- 39. Sjodin, D., Liljeborg, A., & Mutter, S. (2024). Conceptualizing ecosystem management capabilities: managing the ecosystem-organization interface. . Vol. 200. No. 123187. https://doi.org/10.1016/j.techfore.2023.123187
- 40. Stornelli, A., Simms, Ch., Reim, W., & Ozcan, S. (2024). Exploring the dynamic capabilities of technology provider ecosystems: a study of smart manufacturing projects. . Vol. 130. No. 102925. https://doi.org/10.1016/j.technovation.2023.102925
- 41. Sweeting, A., Jia, D., Hui, S., & Yao, X. (2020). Dynamic price competition, learning-by-doing and strategic buyers. . December. http://www.bver.org/papers/w28272
- 42. Wilson, A., & Vespa, E. (2020). Information transmission under the shadow of the future. . Vol. 12. No. 4. Pp. 75–98.
- 43. Xie, X., Liu, X., & Blanco, C. (2023). Evaluating and forecasting the niche fitness of regional innovation ecosystems: a comparative evaluation of different optimized grey models. . Vol. 191. Issue 4. No. 122473. https://doi.org/10.1016/j.techfore.2023.122473
- 44. Zervas, G., Proserpio, D., & John, B. (2021). A First look at online reputation on Airbnb, where every stay is above average. . Vol. 32. No. 1. Pp. 1–16.